数列有极限,即当n趋向无穷大时,数列的项Xn无限趋近于或等于a,任意取一个值ε,是表明无论ε是多小的数,Xn与a的差总小于ε,就是Xn无限趋近于或等于a。
数列极限的定义N,就能保证|an-a|<ε。
比如对于这样一个数列
100时)
N=100,后面的所有项都满足|an|<1/3
从这个意义来说,数列有没有极限,前面的有限项(不管这有限项有多大)不起决定作用。
数列极限的性质(1)极限的唯一性
如果数列{xn}收敛,那么数列的极限唯一。
(2)收敛数列的有界性
如果数列{xn}收敛,那么数列一定有界。
(3)收敛数列的保号性
0。
以上性质中,极限的唯一性和有界性了解即可;极限的保号性用的是最多的,它常与求递推数列的极限、函数的极值点与拐点、连续函数的零点定理等一起应用,也是最容易出错的。
以上就是高考网小编为大家介绍的关于数列极限的定义 有哪些性质问题,想要了解的更多关于《数列极限的定义 有哪些性质》相关文章,请继续关注高考网!