含有三角函数的极限怎么求_高中数学知识点解答

高中数学
内容摘要:
速读文章内容
本文为各位高中生解答了关于“含有三角函数的极限怎么求”的相关内容,希望对大家有所帮助。

很多同学想要了解关于“含有三角函数的极限怎么求”的知识解答,本文整理了关于“含有三角函数的极限怎么求”的相关内容,以下为具体信息:

问题:含有三角函数的极限怎么求

解答:

可以借助重要极限1求解:lim(x→0)tan5x/x=5lim(x→0)tan5x/(5x)=5,极限就是建立在三角函数基本公式变换的基础上,常见的有:(1)等价无穷小代换,(2)洛必达法则。

三角函数相关公式

两角和公式

sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa

cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb

tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)

ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

倍角公式

tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanatanbtan(a+b)+tana+tanb-tan(a+b)=0

万能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

半角公式

sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)

cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)

tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))

ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))

和差化积

2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)

2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)

sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb

ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb

正弦定理a/sina=b/sinb=c/sinc=2r

余弦定理b^2=a^2+c^2-2accosb

想要获取更多高中数学知识点问题解答,请点击查看:高中数学专栏

高中数学基础知识点击进入>>高中数学知识点汇总

》〉更多学科高中知识点专栏推荐:

首页

相关内容

最新发布

专题合集

主页-高考-高中知识-高中数学-含有三角函数的极限怎么求_高中数学知识点解答