函数有界性的定义_高中数学知识点解答

高中数学
内容摘要:
速读文章内容
本文为各位高中生解答了关于“函数有界性的定义”的相关内容,希望对大家有所帮助。

很多同学想要了解关于“函数有界性的定义”的知识解答,本文整理了关于“函数有界性的定义”的相关内容,以下为具体信息:

问题:函数有界性的定义

解答:

定义:若存在两个常数m和M,使函数y=f(x),x∈D 满足m≤f(x)≤M,x∈D 。 则称函数y=f(x)在D有界,其中m是它的下界,M是它的上界。函数在某区间上不是有界就是无界,二者必属其一。

设函数f(x)的定义域为D,f(x)在集合D上有定义。如果存在数K1,使得 f(x)≤K1对任意x∈D都成立,则称函数f(x)在D上有上界。反之,如果存在数字K2,使得 f(x)≥K2对任意x∈D都成立,则称函数f(x)在D上有下界,而K2称为函数f(x)在D上的一个下界。

M,那么函数f(x)在X上无界。此外,函数f(x)在X上有界的充分必要条件是它在X上既有上界也有下界。

想要获取更多高中数学知识点问题解答,请点击查看:高中数学专栏

高中数学基础知识点击进入>>高中数学知识点汇总

》〉更多学科高中知识点专栏推荐:

首页

相关内容

最新发布

专题合集

主页-高考-高中知识-高中数学-函数有界性的定义_高中数学知识点解答