很多同学想要了解关于“函数的性质”的知识解答,本文整理了关于“函数的性质”的相关内容,以下为具体信息:
解答:
其性质通常是指函数的定义域、值域、解析式、单调性、奇偶性、周期性、对称性。函数表示每个输入值对应唯一输出值的一种对应关系。函数f中对应输入值x的输出值的标准符号为f(x)。
性质性质一:对称性
数轴对称:所谓数轴对称也就是说函数图像关于坐标轴X和Y轴对称。
原点对称:同样,这样的对称是指图像关于原点对称,原点两侧,距离原点相同的函数上点的坐标的坐标值互为相反数。
关于一点对称:这种类型和原点对称颇为相近,不同的是此时对称点不再仅限于原点,而是坐标轴上的任意一点。
性质二:周期性
所谓周期性也就是说,函数在一部分区域内的图像是重复出现的,假设一个函数F(X)是周期函数,那么存在一个实数T,当定义域内的X都加上或者减去T的整数倍时,X所对应的Y不变,那么可以说T是该函数的周期,如果T的绝对值达到最小,则称之为最小周期。
想要获取更多高中数学知识点问题解答,请点击查看:高中数学专栏
点击进入>>高中数学知识点汇总
》〉更多学科高中知识点专栏推荐: