很多同学想要了解关于“sinx是有界函数吗?”的知识解答,本文整理了关于“sinx是有界函数吗?”的相关内容,以下为具体信息:
解答:
是有界函数。对任意x∈R。恒有|sinx|≤1。所以sinx有界。但当x趋于无穷大时,sinx极限不存在。sinx最大为1,最小为-1。sinx不是单调函数,只是一个分段单调的函数。
有界函数
有界函数是设f(x)是区间E上的函数,若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。其中m称为f(x)在区间E上的下界,M称为f(x)在区间E上的上界。
有界函数并不一定是连续的。根据定义,在D上有上(下)界,则意味着值域(D)是一个有上(下)界的数集。根据确界原理,在定义域上有上(下)确界。一个特例是有界数列,其中X是所有自然数所组成的集合N。由 (x)=sinx所定义的函数f:R→R是有界的。当x越来越接近-1或1时,函数的值就变得越来越大。
sin函数
sinx函数,即正弦函数,三角函数的一种。正弦函数是三角函数的一种。对于任意一个实数x都对应着唯一的角(弧度制中等于这个实数),而这个角又对应着唯一确定的正弦值sinx,这样,对于任意一个实数x都有唯一确定的值sinx与它对应,按照这个对应法则所建立的函数,表示为y=sinx,叫做正弦函数。
想要获取更多高中数学知识点问题解答,请点击查看:高中数学专栏
点击进入>>高中数学知识点汇总
》〉更多学科高中知识点专栏推荐: