是三角形中心的交点。仅当三角形是正三角形的时候,重心、垂心、内心、外心四心合一心,称做正三角形的中心。重心:三条中线的交点,这点到顶点的距离是它到对边中点距离的2倍;重心分中线比为1:2。
中线
连接三角形的一个顶点及其对边中点的线段叫做三角形的中线(median)。
高
从一个顶点向它的对边所在的直线画垂线,顶点和垂足之间的线段叫做三角形的高(altitude)。
角平分线
三角形一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线(bisector of angle)。
中位线
三角形的三边中任意两边中点的连线叫中位线。它平行于第三边且等于第三边的一半。
性质
1 、在平面上三角形的内角和等于180°(内角和定理)。
2 、在平面上三角形的外角和等于360° (外角和定理)。
3、 在平面上三角形的外角等于与其不相邻的两个内角之和。
推论:三角形的一个外角大于任何一个和它不相邻的内角。
4、 一个三角形的三个内角中最少有两个锐角。
5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6 、三角形任意两边之和大于第三边,任意两边之差小于第三边。
7、 在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。
以上就是高考网小编为大家介绍的关于三角形的垂心是什么的交点问题,想要了解的更多关于《三角形的垂心是什么的交点》相关文章,请继续关注高考网!