如果平面外一条直线和平面内的一条直线平行,那这么直线就和平面平行。简言之:线线平行,则线面平行。同时,要证明线面平行,就得在平面内找一条线,使得线线平行。
线面平行的判定定理定理1
平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
已知:a∥b,aα,bα,求证:a∥α
反证法证明:假设a与α不平行,则它们相交,设交点为A,那么A∈α
∵a∥b,∴A不在b上
在α内过A作c∥b,则a∩c=A
又∵a∥b,b∥c,∴a∥c,与a∩c=A矛盾。
∴假设不成立,a∥α
向量法证明:设a的方向向量为a,b的方向向量为b,面α的法向量为p。∵bα
∴b⊥p,即p·b=0
∵a∥b,由共线向量基本定理可知存在一实数k使得a=kb
那么p·a=p·kb=kp·b=0
即a⊥p
∴a∥α
定理2
平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行 [2] 。
已知:a⊥b,b⊥α,且a不在α上。求证:a∥α
证明:设a与b的垂足为A,b与α的垂足为B。
假设a与α不平行,那么它们相交,设a∩α=C,连接BC由于不在直线上的三个点确定一个平面,因此ABC首尾相连得到△ABC
∵B∈α,C∈α,b⊥α
∴b⊥BC,即∠ABC=90°
∵a⊥b,即∠BAC=90°
∴在△ABC中,有两个内角为90°,这是不可能的事情。
∴假设不成立,a∥α
以上就是高考网小编为大家介绍的关于一条线平行于一个面可以推出什么问题,想要了解的更多关于《一条线平行于一个面可以推出什么》相关文章,请继续关注高考网!