零点的定义与判定定理_高中数学知识点解答

高中数学
内容摘要:
速读文章内容
本文为各位高中生解答了关于“零点的定义与判定定理”的相关内容,希望对大家有所帮助。

很多同学想要了解关于“零点的定义与判定定理”的知识解答,本文整理了关于“零点的定义与判定定理”的相关内容,以下为具体信息:

问题:零点的定义与判定定理

解答:

一、零点的定义与判定定理

1、函数零点的定义:对于函数 $y=f(x)$,我们把使$f(x)=0$的实数$x$叫做函数$y=f(x)$的零点。

2、函数零点的意义:函数$y=f(x)$的零点就是方程$f(x)=0$的实数根,也就是函数$y=f(x)$的图象与$x$ 轴交点的横坐标。

3、函数零点的分类

(1) 变号零点:零点附近两侧的函数值异号
(2) 不变号零点:零点附近两侧的函数值同号

4、函数零点存在性定理:一般地,如果函数$y=f(x)$在区间[a,b]上的图象是连续不断的一条曲线,并且有$f(a) cdot f(b)<0$,那么,函数$y=f(x)$在区间(a,b)内有零点,即存在$c in (a,b)$,使得$f(c)=0$,这个$c$也就是方程$f(x)=0$的根。

5、判断函数零点个数的常用方法

(1) 解方程$f(x)=0$,方程$f(x)=0$的不同解的个数就是函数$f(x)$零点的个数。
(2) 直接作出函数$f(x)$的图象,其图象与$x$轴交点的个数就是函数$f(x)$的零点的个数。
(3) 化函数的零点个数问题为方程$g(x)=h(x)$的解的个数问题,在同一坐标系下作出$y=g(x)$和$y=h(x)$的图象,两函数图象的交点个数就是函数$f(X)$的零点的个数。
(4) 若证明一个函数的零点唯一,也可先由零点存在性定理判断出函数有零点,再证明该函数在定义域内单调。

二、零点的定义相关例题

判断函数$f(x)=x-3+ln ~x$的零点个数___

答案:只有一个零点

解析:令$x-3+ln~x=0$,则$ln~x$与$y=-x+3$的图像只有一个交点,即函数$f(x)=x-3+ln~x$只有一个零点。

想要获取更多高中数学知识点问题解答,请点击查看:高中数学专栏

高中数学基础知识点击进入>>高中数学知识点汇总

》〉更多学科高中知识点专栏推荐:

首页

相关内容

最新发布

专题合集

主页-高考-高中知识-高中数学-零点的定义与判定定理_高中数学知识点解答