很多同学想要了解关于“高中三角函数性质”的知识解答,本文整理了关于“高中三角函数性质”的相关内容,以下为具体信息:
解答:
三角函数性质:三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。
性质如果一个函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期。例如,正弦函数的最小正周期是2π。
对于正弦函数y=sinx,自变量x只要并且至少增加到x+2π时,函数值才能重复取得。正弦函数和余弦函数的最小正周期是2π。
三角函数性质对照表三角函数常用公式
基本公式
sin2(α)+cos2(α)=1sin2(α)+cos2(α)=1
在单位圆中,sin(α)sin(α)与cos(α)cos(α)为直角边,斜边为1,利用勾股定理即可。
和角公式
sin(α+β)=sin(α)cos(β)+cos(α)sin(β)sin(α+β)=sin(α)cos(β)+cos(α)sin(β)
cos(α+β)=cos(α)cos(β)sin(α)sin(β)cos(α+β)=cos(α)cos(β)sin(α)sin(β)
tan(α+β)=tan(α)+tan(β)1tan(α)tan(β)tan(α+β)=tan(α)+tan(β)1tan(α)tan(β)
差角公式
sin(αβ)=sin(α)cos(β)cos(α)sin(β)sin(αβ)=sin(α)cos(β)cos(α)sin(β)
cos(αβ)=cos(α)cos(β)+sin(α)sin(β)cos(αβ)=cos(α)cos(β)+sin(α)sin(β)
tan(αβ)=tan(α)tan(β)1+tan(α)tan(β)
和差化积公式
sin(α)+sin(β)=2sin(α+β2)cos(αβ2)sin(α)+sin(β)=2sin(α+β2)cos(αβ2)
sin(α)sin(β)=2cos(α+β2)sin(αβ2)sin(α)sin(β)=2cos(α+β2)sin(αβ2)
cos(α)+cos(β)=2cos(α+β2)cos(αβ2)cos(α)+cos(β)=2cos(α+β2)cos(αβ2)
cos(α)cos(β)=2sin(α+β2)sin(αβ2)cos(α)cos(β)=2sin(α+β2)sin(αβ2)
tan(α)+tan(β)=sin(α+β)cos(α)cos(β)tan(α)+tan(β)=sin(α+β)cos(α)cos(β)
tan(α)tan(β)=sin(αβ)cos(α)cos(β)
倍角公式
sin(2α)=2sin(α)cos(α)sin(2α)=2sin(α)cos(α)
cos(2α)=cos2(α)sin2(α)cos(2α)=cos2(α)sin2(α)
tan(2α)=2tan(α)1tan2(α)tan(2α)=2tan(α)1tan2(α)
想要获取更多高中数学知识点问题解答,请点击查看:高中数学专栏
点击进入>>高中数学知识点汇总
》〉更多学科高中知识点专栏推荐: