解三角形判断有几个解_高中数学知识点解答

高中数学
内容摘要:
速读文章内容
本文为各位高中生解答了关于“解三角形判断有几个解”的相关内容,希望对大家有所帮助。

很多同学想要了解关于“解三角形判断有几个解”的知识解答,本文整理了关于“解三角形判断有几个解”的相关内容,以下为具体信息:

问题:解三角形判断有几个解

解答:

解三角形判断有几个解:a小于b,sinA无解;a小于等于b,无解;a=b,sinA一解;a大于b,一解;其余的两解。

判断解法

已知条件:一边和两角

一般解法:由A+B+C=180°,求角A,由正弦定理求出b与c,在有解时,有一解。

已知条件:两边和夹角

一般解法:由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180°求出另一角,在有解时有一解。

已知条件:三边

一般解法:由余弦定理求出角A、B,再利用A+B+C=180°,求出角C在有解时只有一解。

已知条件:两边和其中一边的对角

一般解法:由正弦定理求出角B,由A+B+C=180°求出角C,再利用正弦定理求出C边,可有两解、一解或无解。(或利用余弦定理求出c边,再求出其余两角B、C)

B有唯一解;

bsinA有两解;

③若a 常用定理

正弦定理

a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,R是此三角形外接圆的半径)。

变形公式

(1)a=2RsinA,b=2RsinB,c=2RsinC

(2)sinA:sinB:sinC=a:b:c

(3)asinB=bsinA,asinC=csinA,bsinC=csinB

(4)sinA=a/2R,sinB=b/2R,sinC=c/2R

面积公式(5)S=1/2bcsinA=1/2acsinB=1/2absinC S=1/2底·h(原始公式)

余弦定理

a=b+c-2bccosA

b=a+c-2accosB

c=a+b-2abcosC

注:勾股定理其实是余弦定理的一种特殊情况。

变形公式

cosC=(a+b-c)/2ab

cosB=(a+c-b)/2ac

cosA=(c+b-a)/2bc

想要获取更多高中数学知识点问题解答,请点击查看:高中数学专栏

高中数学基础知识点击进入>>高中数学知识点汇总

》〉更多学科高中知识点专栏推荐:

首页

相关内容

最新发布

专题合集

主页-高考-高中知识-高中数学-解三角形判断有几个解_高中数学知识点解答