很多同学想要了解关于“cos2x的导数”的知识解答,本文整理了关于“cos2x的导数”的相关内容,以下为具体信息:
解答:
cos2x的导数:-2sin2x。这是一个复合函数的导数,有两层,外层是cos的导数,内层是2x的导数,所以(cos2x)'=-sin2x*(2x)的导数=-2sin2x。
解:(cos2x)'
=-sin2x*(2x)'
=-2sin2x
导数,也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
想要获取更多高中数学知识点问题解答,请点击查看:高中数学专栏
点击进入>>高中数学知识点汇总
》〉更多学科高中知识点专栏推荐: