面面垂直是推不出线线垂直的,但是线面垂直能推出来线线垂直,即一直线如果垂直某平面,则该直线垂直此平面内任一直线;该线所在任何平面也垂直于此平面。
线面垂直几何法判定定理
已知l⊥m,l⊥n,m,nα,m∩n=E。求证:EF⊥α
因为平移不改变角度,所以可以通过平移把所有的直线移动到相交于一点的位置来证明。
证明:∵l⊥m,l⊥n
∴在α内所有与m或n平行的直线都与l垂直。
接下来证明那些与m,n不平行的直线也与l垂直。
取m上A,B两点,取n上C,D两点,使AE=BE,CE=DE
连接AD,BC,过E作任意一条直线,该直线与AD,BC交点为G,H(稍后将讨论GH与AD,BC平行的情况)
取l上异于E的点F,连接FA,FG,FD,FB,FH,FC
∵AE=BE,CE=DE,∠AED=∠BEC
∴△AED≌△BEC(SAS)
∴∠DAE=∠CBE,AD=BC
∵∠AEG=∠BEH
∴△AEG≌△BEH(ASA)
∴AG=BH,GE=HE
∵EF⊥AB,AE=BE
∴FA=FB
同理,FC=FD
∴△FAD≌△FBC(SSS)
∴∠FAG=∠FBH
∴△FAG≌△FBH(SAS)
∴FG=FH
又∵GE=HE
∴FE⊥GH
由GH的任意性可知,EF垂直平面内任意与AD,BC都不平行的直线
当GH∥AD∥BC时,可以连接AC,BD,那么GH必与AC,BD相交
之后证明方法同上,只需要改字母即可。
根据线面垂直的定义,l⊥α
以上就是高考网小编为大家介绍的关于面面垂直可以推出线线垂直吗问题,想要了解的更多关于《面面垂直可以推出线线垂直吗》相关文章,请继续关注高考网!