二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数yˊ=fˊ(x)仍然是x的函数,则y′′=f′′(x)的导数叫做函数y=f(x)的二阶导数。在图形上,它主要表现函数的凹凸性。
高中数学第二次求导的意义函数在某点的一阶导数表示函数图象在该点的切线的斜率,表达了函数值在该点附近的变化快慢,相应地,对函数二次求导,相当于对原来函数的一阶导函数再进行一次求导,所得二阶导数即表示切线的斜率的变化快慢,可对比位移一次求导即速度,位移二次求导即加速度来理解。
几何意义:
1、切线斜率变化的速度,表示的是一阶导数的变化率。
2、函数的凹凸性(例如加速度的方向总是指向轨迹曲线凹的一侧)。
函数凹凸性:
设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么,
0,则f(x)在[a,b]上的图形是凹的。
(2)若在(a,b)内f’‘(x)<0,则f(x)在[a,b]上的图形是凸的。
函数可导的条件如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。
可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。