初中数学干货:知识点总结

武汉佳学100教育
内容摘要:
速读文章内容
初中数学干货:知识点总结

佳学100

整理了数学一些知识点!各位同学可以看看哟!

佳学100

01 —次函数抛物线顶点式

顶点式:y=a(x-h)^2+k(a=?0,k为常数,x=?h)

顶点坐标:(-b/2a,(4ac-b^2)/4a)

顶点坐标_顶点坐标-解释

在二次函数的图像上

顶点式:y=a(x-h)^2;+k抛物线的顶点P(h,k)

顶点坐标:对于二次函数y=ax^2;

+bx+c其顶点坐标为(-b/2a,(4ac-b^2;)/4a)

佳学100

02二次函数口诀速记

二次方程零换y,二次函数便出现。

全体实数定义域,图像叫做抛物线。

抛物线有对称轴,两边单调正相反。

A定开口及大小,线轴交点叫顶点。

顶点非高即最低。上低下高很显眼。

如果要画抛物线,平移也可去描点,

提取配方定顶点,两条途径再挑选。

列表描点后连线,平移规律记心间。

左加右减括号内,号外上加下要减。

二次方程零换y,就得到二次函数。

图像叫做抛物线,定义域全体实数。

A定开口及大小,开口向上是正数。

绝对值大开口小,开口向下A负数。

抛物线有对称轴,增减特性可看图。

线轴交点叫顶点,顶点纵标最值出。

如果要画抛物线,描点平移两条路。

提取配方定顶点,平移描点皆成图。

列表描点后连线,三点大致定全图。

若要平移也不难,先画基础抛物线,

顶点移到新位置,开口大小随基础。

【注】基础抛物线

佳学100

03 二次函数顶点坐标公式推导

一般式:y=ax^2+bx+c(a,b,c为常数,a=?0)

顶点式:y=a(x-h)^2+k

【抛物线的顶点P(h,k)】

对于二次函数y=ax^2+bx+c

其顶点坐标为(-b/2a,(4ac-b^2)/4a)

推导:

y=ax^2+bx+c

y=a(x^2+bx/a+c/a)

y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2)

y=a(x+b/2a)^2+c-b^2/4a

y=a(x+b/2a)^2+(4ac-b^2)/4a

对称轴x=-b/2a

顶点坐标(-b/2a,(4ac-b^2)/4a)

佳学100

04 相似三角形

①相似三角形的概念、相似比的意义、画图形的放大和缩小

(1)理解相似形的概念;

(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。

②平行线分线段成比例定理、三角形一边的平行线的有关定理

理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。

注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。

③相似三角形的概念

以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。

④考点:相似三角形的判定和性质及其应用

熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。

⑤三角形的重心

知道重心的定义并初步应用.

⑥向量的有关概念

⑦向量的加法、减法、实数与向量相乘、向量的线性运算

掌握实数与向量相乘、向量的线性运算

佳学100

05有理数的分类、大小比较和运算

(1)按有理数的定义:

正整数、0、负整数统称为整数;

正分数和负分数统称为分数;

整数和分数统称为有理数。

整数:

①正整数:1,2,3,...;

②零:0;

③负整数:-1,-2,...;

分数:

①正分数:佳学100,0.15,...;

②负分数:佳学100,-0.15,...;

(2)按有理数的性质分类:

正有理数:

①正整数:1,2,3,...;

②正分数:佳学100,0.15,...;

零:0;

负有理数:

负整数:-1,-2,...;

负分数:佳学100,-0.15,...;

注意:

(1) 无限循环小数可以写成分数形式,所以是有理数。

(2)所有正数组成正数集合,所有负数组成负数集合,所有整数组成整数集合,所有有理数组成有理数集合。

(3)正数和0统称为非负数,负数和0统称为非正数。

有理数的大小比较:

负数;

2.两个负数比较:

①右边的点表示的数比左边的点表示的数大。

②绝对值大的反而小。

有理数的运算

1.有理数的加法:

加法一般步骤:

①确定符号:同号取相同的符号。

异号取绝对值大的加数的符号。

②确定绝对值:同号将绝对值相加。

异号用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。一个数与0相加,仍得这个数。

用字母表示加法的交换律a+b=b+a;加法结合律a+b+c=(a+b)+c=a+(b+c)。

三个或三个以上有理数相加,可以写成这些数的连加式,对于连加式,根据加法

交换律和加法结合律,可以任意交换加数的位置,也可先把其中的某几个数相加。

根据算式的特征,恰当地运用运算律,可以使运算简便:

①符号相同的数先相加--同号结合法

②互为相反数的先相加--相反数结合法

③分母相同的数先相加--同分母结合法

④正数与正数,小数与小数相加--同形结合法

2.有理数的减法:

减法法则:减去一个数,等于加上这个数的相反数。

加减法混合运算,把减法转化为加法再计算。

3.代数和:有理数加减混合运算时,将加减法统一成加法运算,转化为求几个正数或负数的和。

在一个和式中,可以把各个加数的括号和括号前面的加号省略不写,写成省略加号的和的形式。

4.有理数的乘法:

乘法步骤:

1、确定符号:同号正,异号负。

2、绝对值:求积。

任何数与0相乘,都得0。任何数与-1相乘都得这个数的相反数。

多个有理数相乘的运算:

几个非0有理数相乘时,当负因数个数是偶数时,积为正;

负因数个数是奇数时,积为负;

乘法交换律,乘法结合律,乘法分配律;

5.有理数的除法:

除法步骤:

1、确定符号:同号正,异号负。

2、绝对值:相除。

除以一个不等于0的数等于乘上这个数的倒数。

0除以任何一个不等于0的数都得0。

佳学100

06 二次根式的应用知识点总结

二次根式的应用主要体现在两个方面:

①利用从特殊到一般,在由一般到特殊的重要思想方法,解决一些规律探索性问题;

②利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。

这个过程需要用到二次根式的计算,其实就是化简求值。

常见用法:

(1)设计一些规律探索问题提高学生的想象力和创造力;

(2)联系生活实际设计一些方案探究题。

误区提醒:

(1)不能通过观察,归纳、猜想寻找出共同的规律,并运用这种规律解决问题;

(2)不会应用数学的知识解决实际生活中的问题。

佳学100

07 角平分线的性质及判定

性质定理:角平分线上的点到该角两边的距离相等。

判定定理:到角的两边距离相等的点在该角的角平分线上。

佳学100

08 三角形的稳定性

我们在学习三角形的知识中,老师经常会提到的一句话就是:三角形具有稳定性。

稳定性证明:

任取三角形两条边,则两条边的非公共端点被第三条边连接。

∵ 第三条边不可伸缩或弯折 ,

∴ 两端点距离固定 ,

∴ 这两条边的夹角固定;

∵ 这两条边是任取的 ,

∴ 三角形三个角都固定,进而将三角形固定,

∴ 三角形有稳定性 。

任取n边形(n≥4)两条相邻边,则两条边的非公共端点被不止一条边连接

∴ 两端点距离不固定 ,

∴ 这两边夹角不固定 ,

∴ n边形(n≥4)每个角都不固定,所以n边形(n≥4)没有稳定性。

如果不看上面的证明过程,我们就没有办法清晰的理解三角形稳定性的所有定理。

佳学100

09 全等图形与三角形

1.全等图形:能够完全重合的两个图形就是全等图形。

2.全等图形的性质:全等多边形的对应边、对应角分别相等。

3.全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相等。同样,如果两个三角形的边、角分别对应相等,那么这两个三角形全等。

说明:全等三角形对应边上的高,中线相等,对应角的平分线相等;全等三角形的周长,面积也都相等。

这里要注意:

(1)周长相等的两个三角形,不一定全等;

(2)面积相等的两个三角形,也不一定全等。

佳学100

10 相反数

①只有符号不同的两个数,叫做互为相反数。0的相反数是0。

②a的相反数-a

③a与b互为相反数:a+b=0

④a-b的相反数是:-a+b或b-a

⑤a+b的相反数是:-a-b

⑥求一个数的相反数方法:在这个数的前面加“-”号.

⑦在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

佳学100

11 绝对值

1.几何意义:从数轴上表示a的点到原点的距离即为︱a︱

2. ①一个正数的绝对值等于它本身;当a是正数时,︱a︱=a;

②一个负数的绝对值等于它的相反数; 当a是负数时,︱a︱=-a;

③0的绝对值等于0。当a=0时,︱a︱=0。

3.互为相反数的两个数的绝对值相等。

佳学100

12 倒数

①乘积是1的两个数叫作互为倒数。

②a的倒数是a分之1(a=?0)

③a与b互为倒数 ab=1

④正数的倒数还是正数,负数的倒数还是负数,0没有倒数。

佳学100

13 乘方

①求几个相同因数的积的运算叫做乘方

a^a^…^a=a^n

②底数、指数、幂

佳学100

14轴对称

轴对称的定义:

把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合 ,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。

轴对称的性质:

(1)对应点所连的线段被对称轴垂直平分;

(2)对应线段相等,对应角相等;

(3)关于某直线对称的两个图形是全等图形。

轴对称的判定:

如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

这样就得到了以下性质:

1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

2.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

3.线段的垂直平分线上的点与这条线段的两个端点的距离相等。

4.对称轴是到线段两端距离相等的点的集合。

轴对称作用:

可以通过对称轴的一边从而画出另一边。

可以通过画对称轴得出的两个图形全等。

扩展到轴对称的应用以及函数图像的意义。

轴对称的应用

关于平面直角坐标系的X,Y对称意义

如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。

相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。

关于二次函数图像的对称轴公式(也叫做轴对称公式)

设二次函数的解析式是 y=ax2+bx+c

则二次函数的对称轴为直线 x=-b/2a,顶点横坐标为 -b/2a,顶点纵坐标为 (4ac-b2)/4a

在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。

譬如,等腰三角形经常添设顶角平分线;

矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;

正方形,菱形问题经常添设对角线等等。

另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。

佳学100

在家学习难?

脑子总是想游戏的画面?

感觉自己很学习运很衰?

那你就来我们这里试试!

佳学100初中全科一对一、精品小班课、多人大班课等多种班型

寒、春连报火热招生!

佳学100

八一花园校区

地址:洪山区雄楚大道熊家咀八一花园E6门面二楼整层(洪山高中斜对面,556终点站旁)

联系人:17771899002 陈老师

佳学100

首页

相关内容

最新发布

专题合集

艺考培训-湖北文化课-武汉-武汉佳学100教育-初中数学干货:知识点总结