很多同学想要了解关于“等差数列中项公式是什么”的知识解答,本文整理了关于“等差数列中项公式是什么”的相关内容,以下为具体信息:
解答:
数列为奇数项时,前n项的和=中间项×项数,数列为偶数项,求首尾项相加,用它的和除以2,等差中项公式2an+1=an+an+2其中{an}是等差数列。
等差数列的通项公式例如:1,3,5,7,9……2n-1。
通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。
通项公式推导:
a2-a1=d;a3-a2=d;a4-a3=d……an-a(n-1)=d,将上述式子左右分别相加,得出an-a1=(n-1)*d→an=a1+(n-1)*d。
前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2
Sn=[n*(a1+an)]/2
Sn=d/2*n+(a1-d/2)*n
注:以上n均属于正整数。
等差数列的性质若m,n,p,q∈N*,且m+n=p+q,则有
am+an=ap+aq
Sm-1=(2n-1)an,S2n+1=(2n+1)an+1
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.
和=(首项+末项)*项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
项数=(末项-首项)/公差+1
想要获取更多高中数学知识点问题解答,请点击查看:高中数学专栏
点击进入>>高中数学知识点汇总
》〉更多学科高中知识点专栏推荐: