四点共圆的判定方法是什么_高中数学知识点解答

高中数学
内容摘要:
速读文章内容
本文为各位高中生解答了关于“四点共圆的判定方法是什么”的相关内容,希望对大家有所帮助。

很多同学想要了解关于“四点共圆的判定方法是什么”的知识解答,本文整理了关于“四点共圆的判定方法是什么”的相关内容,以下为具体信息:

问题:四点共圆的判定方法是什么

解答:

根据圆内四边形的一些定理,它个逆定理也可判定四点共圆。圆的内接四边形的两对角和是180度,反之,如果四边形的两对角和是180,那么四点共圆。在圆里,同弦角相等。设A、B、C、D四点在圆上,明显,AB弦所对的角∠ACB=∠ADB。反之,如果∠ACB=∠ADB,那四点共圆。

四点共圆判定

判定1

从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆周上,若能证明这一点,即可肯定这四点共圆。

推论:证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.即连成的四边形三边中垂线有交点,可肯定这四点共圆。

判定2

1:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆。

2:把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。

判定3

把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆(相交弦定理的逆定理);或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆。(割线定理的逆定理)

判定4

四边形ABCD中,若有AB*CD+AD*BC=AC*BD,即两对边乘积之和等于对角线乘积,则ABCD四点共圆。该方法可以由托勒密定理逆定理得到。

托勒密定理逆定理:对于任意一个凸四边形ABCD,总有AB*CD+AD*BC≥AC*BD,等号成立的条件是ABCD四点共圆。

判定5

西姆松定理逆定理:若一点在一三角形三边上的射影共线,则该点在三角形外接圆上。

四点共圆有三个性质:

(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;

(2)圆内接四边形的对角互补;

(3)圆内接四边形的外角等于内对角。

想要获取更多高中数学知识点问题解答,请点击查看:高中数学专栏

高中数学基础知识点击进入>>高中数学知识点汇总

》〉更多学科高中知识点专栏推荐:

首页

相关内容

最新发布

专题合集

主页-高考-高中知识-高中数学-四点共圆的判定方法是什么_高中数学知识点解答