很多同学想要了解关于“e的x的2次方的导数”的知识解答,本文整理了关于“e的x的2次方的导数”的相关内容,以下为具体信息:
解答:
e的x的2次方的导数是:y=e^(x^2)。两边取对数得lny=x^2,两边对x求导得y`/y=2x,y`=y*2x=2x*e^(x^2)。e^(2x)是一个复合函数, 由u=2x和y=e^u复合而成。
e∧(2x)的导数是什么e^(2x)的导数是2e^(2x)。
详细解释如下:
e^(2x)是一个复合函数, 由u=2x和y=e^u复合而成。
计算步骤如下:
设u=2x,
求出u关于x的导数:u'=2;
对e的u次方对u进行求导:(e^u)'=e^u·u';
最终结果:[e^(2x)]'=2e^(2x).
诸如e∧(2x)复合函数求导,链式法则:
若h(a)=f[g(x)],则h"(a)=f'[g(x)]g'(x).
链式法则用文字描述,就是“由两个函数凑起来的复合函数,导数等于里函数代入外函数的值之导数,乘以里边函数的导数。”
是什么导数0,则函数y=f(x)在此区间内单调递增,如果f'(x)0是f(x)在这个区间上是增函数的充分条件,但不是必要条件。
2.不是所有的函数都有导数,一个函数不一定在所有的点上都有导数,让函数y=f(x)定义在点x=x0及其附近,当自变量x在x0处有变化△x时(△x可以是正的也可以是负的),那么函数y相应地有变化△y=f(xax的导数是什么△x)-f(x0),这两个变化的比值称为从x0到x0的函数y=f(x)。
3.如果一个函数的导数存在于某一点,则称其在该点可导,否则称其不可导,当自变量的增量趋近于零时,因变量的增量与自变量的增量的商的极限,当一个函数有导数时,就说这个函数是可导的或可微的,可微函数必须是连续的,不连续函数必须是不可微的。
部分导数公式1.y=c(c为常数) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x;y'=a^xlna;y=e^x y'=e^x
4.y=logax y'=logae/x;y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
想要获取更多高中数学知识点问题解答,请点击查看:高中数学专栏
点击进入>>高中数学知识点汇总
》〉更多学科高中知识点专栏推荐: