反函数与原函数的关系是什么?_高中数学知识点解答

高中数学
内容摘要:
速读文章内容
本文为各位高中生解答了关于“反函数与原函数的关系是什么?”的相关内容,希望对大家有所帮助。

很多同学想要了解关于“反函数与原函数的关系是什么?”的知识解答,本文整理了关于“反函数与原函数的关系是什么?”的相关内容,以下为具体信息:

问题:反函数与原函数的关系是什么?

解答:

在一般情况下,如果x与y关于某种对应关系函数f(x)相对应,y=f(x),则y=f(x)的反函数为y=f -1(x)。反函数就是把原函数的x,y互换,原函数与反函数的导数互为倒数。

原函数与反函数的定义

(一)原函数:

原函数的定义:对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。

原函数的例子:∫cosxdx=sinx

原函数的定理:函数f(x)在某区间上连续的话,那么f(x)在这个区间里必会存在原函数。这是属于充分不必要条件,还被叫做是原函数存在定理,要是函数有原函数的话,那它的原函数为无穷多个。

(二)反函数:

反函数的定义:设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f﹣(x) 。反函数y=f ﹣(x)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。

反函数的例子:y=2x-1的反函数是y=0.5x+0.5

反函数性质:函数f(x)与它的反函数f-1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称;函数存在反函数的充要条件是,函数的定义域与值域是一一映射的。

原函数与反函数的关系

1、函数的反函数,本身也是一个函数,由反函数的定义,原来函数也是其反函数的反函数,故函数的原来函数与反函数互称为反函数。

2、反函数的定义域与值域分别是原来函数的值域与定义域。

3、偶函数必无反函数。

4、单调函数必有反函数。

5、奇函数如果有反函数,其反函数也是奇函数。

6、原函数与其反函数在他们各自的定义域上单调性相同。

7、互为反函数的图象间的关系。

8、函数y=f(x)的图象和它的反函数y=f-1(x)的图象关于直线y=x对称,关于这一关系的理解要注意以下三点:

函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,这个结论是在坐标系中横坐标轴为x轴,纵坐标轴为y轴,而且横坐标轴与纵坐标轴的单位长度一致的前提下得出的;

(a,b)在y=f(x)的图象上<=>(b,a)在y=f-1(x)的图象上;

若y=f(x)存在反函数y=f-1(x),则函数y=f(x)的图象关于直线y=x对称的充分必要条件为f(x)=f-1(x),即原、反函数的解析式相同。

想要获取更多高中数学知识点问题解答,请点击查看:高中数学专栏

高中数学基础知识点击进入>>高中数学知识点汇总

》〉更多学科高中知识点专栏推荐:

首页

相关内容

最新发布

专题合集

主页-高考-高中知识-高中数学-反函数与原函数的关系是什么?_高中数学知识点解答