asinx-bcosx辅助角公式_高中数学知识点解答

高中数学
内容摘要:
速读文章内容
本文为各位高中生解答了关于“asinx-bcosx辅助角公式”的相关内容,希望对大家有所帮助。

很多同学想要了解关于“asinx-bcosx辅助角公式”的知识解答,本文整理了关于“asinx-bcosx辅助角公式”的相关内容,以下为具体信息:

问题:asinx-bcosx辅助角公式

解答:

辅助角公式:使用代数式表达为asinx+bcosx=√(a+b)sin[x+rctan(b/a)](a>0)。虽然该公式已经被写入中学课本,但其几何意义却鲜为人知。

辅助角公式

辅助角公式是李善兰先生提出的一种高等三角函数公式,是数学上的专业术语,隶属于高等数学知识,使用代数式表达为acosx+bsinx=√(a+b)sin(x+arctan(a/b))。

对于acosx+bsinx型函数,我们可以如此变形acosx+bsinx=√(a^2+b^2)(acosx/√(a^2+b^2)+bsinx/√(a^2+b^2)),令点(b,a)为某一角φ终边上的点,则sinφ=a/√(a^2+b^2),cosφ=b/√(a^2+b^2)

∴acosx+bsinx=√(a^2+b^2)sin(x+arctan(a/b))

这就是辅助角公式。

设要证明的公式为acosA+bsinA=√(a^2+b^2)sin(A+M)(tanM=b/a)

辅助角公式推理过程

asinx+bcosx

=√(a^2+b^2){sinx*(a/√(a^2+b^2)+cosx*(b/√(a^2+b^2)}

=√(a^2+b^2)sin(x+φ)

所以:cosφ=a/√(a^2+b^2) 或者 sinφ=b/√(a^2+b^2) 或者 tanφ=b/a(φ=arctanb/a )

其实就是运用了sin的二倍角公式(逆过程,即倒推),要验证一下的话,就用sin^2+cos^2=1

想要获取更多高中数学知识点问题解答,请点击查看:高中数学专栏

高中数学基础知识点击进入>>高中数学知识点汇总

》〉更多学科高中知识点专栏推荐:

首页

相关内容

最新发布

专题合集

主页-高考-高中知识-高中数学-asinx-bcosx辅助角公式_高中数学知识点解答