数学奇变偶不变符号看象限怎么理解_高中数学知识点解答

高中数学
内容摘要:
速读文章内容
本文为各位高中生解答了关于“数学奇变偶不变符号看象限怎么理解”的相关内容,希望对大家有所帮助。

很多同学想要了解关于“数学奇变偶不变符号看象限怎么理解”的知识解答,本文整理了关于“数学奇变偶不变符号看象限怎么理解”的相关内容,以下为具体信息:

问题:数学奇变偶不变符号看象限怎么理解

解答:

奇变偶不变,符号看象限,这句口诀意思是:在诱导公式中,如果你差的角度是90度也就是二分之派的整数倍,可以用此公式。

解释:奇变偶不变,符号看象限

对于kπ/2±α(k∈Z)的三角函数值,

①当k是偶数时,得到α的同名函数值,即函数名不改变;

②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。(符号看象限)

第一象限内任何一个角的三角函数值都是“+”;

第二象限内只有正弦、余割是“+”,其余全部是“-”;

第三象限内只有正切、余切函数是“+”,弦函数是“-”;

第四象限内只有余弦、正割是“+”,其余全部是“-”。

诱导公式

公式一:设α为任意角,终边相同的角的同一三角函数的值相等

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:任意角α与-α的三角函数值之间的关系

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:π/2±α与α的三角函数值之间的关系

sin(π/2+α)=cosα

sin(π/2-α)=cosα

cos(π/2+α)=-sinα

cos(π/2-α)=sinα

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

cot(π/2+α)=-tanα

cot(π/2-α)=tanα

想要获取更多高中数学知识点问题解答,请点击查看:高中数学专栏

高中数学基础知识点击进入>>高中数学知识点汇总

》〉更多学科高中知识点专栏推荐:

首页

相关内容

最新发布

专题合集

主页-高考-高中知识-高中数学-数学奇变偶不变符号看象限怎么理解_高中数学知识点解答