很多同学想要了解关于“函数奇偶性判断”的知识解答,本文整理了关于“函数奇偶性判断”的相关内容,以下为具体信息:
解答:
函数奇偶性的判断口诀:内偶则偶,内奇同外。验证奇偶性的前提:要求函数的定义域必须关于原点对称。
判断方法1、先分解函数为常见的一般函数,比如多项式x^n,三角函数,判断奇偶性。
2、根据分解的函数之间的运算法则判断,一般只有三种种f(x)g(x)、f(x)+g(x),f(g(x))(除法或减法可以变成相应的乘法和加法)
3、若f(x)、g(x)其中一个为奇函数,另一个为偶函数,则f(x)g(x)奇、f(x)+g(x)非奇非偶函数,f(g(x))奇。
4、若f(x)、g(x)都是偶函数,则f(x)g(x)偶、f(x)+g(x)偶,f(g(x))偶。
5、若f(x)、g(x)都是奇函数,则f(x)g(x)偶、f(x)+g(x)奇,f(g(x))奇。
想要获取更多高中数学知识点问题解答,请点击查看:高中数学专栏
点击进入>>高中数学知识点汇总
》〉更多学科高中知识点专栏推荐: