等价无穷小的使用前提_高中数学知识点解答

高中数学
内容摘要:
速读文章内容
本文为各位高中生解答了关于“等价无穷小的使用前提”的相关内容,希望对大家有所帮助。

很多同学想要了解关于“等价无穷小的使用前提”的知识解答,本文整理了关于“等价无穷小的使用前提”的相关内容,以下为具体信息:

问题:等价无穷小的使用前提

解答:

使用条件:被代换的量,在去极限的时候极限值为0。被代换的量,作为被乘或者被除的元素时,可以用等价无穷小代换,但是作为加减的元素时就不可以。

求极限时使用等价无穷小的条件:

1、被代换的量,在去极限的时候极限值为0。

2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

无穷小就是以数零为极限的变量。然而常量是变量的特殊一类,就像直线属于曲线的一种。确切地说,当自变量x无限接近某个值x0(x0可以是0、∞、或是别的什么数)时,函数值f(x)与零无限接近,即f(x)=0,则称f(x)为当x→x0时的无穷小量。

等价无穷小是无穷小的一种。在同一点上,这两个无穷小之比的极限为1,称这两个无穷小是等价的。等价无穷小也是同阶无穷小。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。

想要获取更多高中数学知识点问题解答,请点击查看:高中数学专栏

高中数学基础知识点击进入>>高中数学知识点汇总

》〉更多学科高中知识点专栏推荐:

首页

相关内容

最新发布

专题合集

主页-高考-高中知识-高中数学-等价无穷小的使用前提_高中数学知识点解答