导数和斜率的关系_高中数学知识点解答

高中数学
内容摘要:
速读文章内容
本文为各位高中生解答了关于“导数和斜率的关系”的相关内容,希望对大家有所帮助。

很多同学想要了解关于“导数和斜率的关系”的知识解答,本文整理了关于“导数和斜率的关系”的相关内容,以下为具体信息:

问题:导数和斜率的关系

解答:

高中函数图像的斜率可以根据此函数的导数求出。导数是一个整体的,而斜率是一个点的。斜率是实际画出来的,是根据长度比也就是角度得到的。而导数求出来的是标准坐标系的也就是1:1的斜率,如果横纵坐标比例改变或坐标轴夹角不是90,根据导数求出的和实际画出的图像是会有差别的。

导数也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

斜率,数学、几何学名词,是表示一条直线(或曲线的切线)关于(横)坐标轴倾斜程度的量。它通常用直线(或曲线的切线)与(横)坐标轴夹角的正切,或两点的纵坐标之差与横坐标之差的比来表示。

斜率又称“角系数”,是一条直线对于横坐标轴正向夹角的正切,反映直线对水平面的倾斜度。一条直线与某平面直角坐标系横坐标轴正半轴方向所成的角的正切值即该直线相对于该坐标系的斜率。如果直线与x轴互相垂直,直角的正切值为tan90°,故此直线不存在斜率(也可以说直线的斜率为无穷大)。当直线L的斜率存在时,对于一次函数y=kx+b(斜截式),k即该函数图像的斜率。

想要获取更多高中数学知识点问题解答,请点击查看:高中数学专栏

高中数学基础知识点击进入>>高中数学知识点汇总

》〉更多学科高中知识点专栏推荐:

首页

相关内容

最新发布

专题合集

主页-高考-高中知识-高中数学-导数和斜率的关系_高中数学知识点解答